
1. Introduction
Atmospheric rivers (ARs) are elongated corridors of water vapor in the lower troposphere that cause extreme 
precipitation over many coastal regions around the globe. They play a vital role in the water cycle in the western 
US, fueling the most extreme west coast precipitation and sometimes accounting for more than 50% of total 
annual west coast precipitation (Gershunov et al., 2017). Severe ARs are associated with extreme flooding and 
damages while weak ARs are typically more beneficial to our society as they bring much needed drought relief 
(Ralph et al., 2019). Future climate projections show an increase in US west coast precipitation variability caused 
by AR precipitation increasing and non-AR precipitation decreasing (Gershunov et  al.,  2019). From 2012 to 
2016, California experienced a historic drought, which was followed by the state's second wettest year on record. 
2020 and 2021 are two of the driest years on record over much of the western US (Williams et al., 2022). The 
extreme interannual variability in western US precipitation in recent years coinciding with climate change projec-
tions of increased precipitation variability is a serious cause for concern over how patterns may change in the 
coming decades (Polade et al., 2017; Shields & Kiehl, 2016).

A necessary step in understanding changing patterns in ARs as a function of climate change is employing 
an AR detection method. There are a variety of different algorithms used to track ARs due to their relatively 
diverse definitions (Shields et al., 2018). The Atmospheric River Tracking Intercomparison Project (ARTMIP) 
organizes and provides information on all the widely accepted algorithms that exist. Nearly all the algo-
rithms included in ARTMIP rely on absolute and relative numerical thresholds. Absolute thresholds are static 
constraints that are required for an AR to exist, typically coming in the form of length, width, minimum inte-
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grated vapor transport (IVT), or minimum integrated water vapor (IWV), while relative thresholds typically 
come in the form of percentile based IVT and IWV constraints. The computational expense of running these 
methods and retrieving their required input variables can be particularly problematic when applied to large 
climate datasets. The vast majority of algorithms heavily factor in IVT to track ARs, which either needs to 
be calculated with wind velocity and humidity at multiple vertical model levels (Neiman et al., 2008) or must 
be  output directly. Both methods of acquiring IVT are often unavailable in climate model output at the temporal 
resolution that ARs occur. When IVT is unavailable in model output, AR detection algorithms that require it 
as input are unusable.

A recent alternative way of tracking ARs is using machine learning. There are many neural networks that are 
commonly applied toward identifying objects in a wide range of applications via semantic segmentation. The 
first of these neural networks that was applied toward detecting ARs is DeepLabv3+ (Prabhat et  al.,  2021). 
DeepLabv3+ is a state-of-the-art model that demonstrates one of the highest performances of any present day 
neural network when tasked with the objective of identifying objects in cityscapes (Wu et al., 2019). In this study, 
we employ an identical network to (Kapp-Schwoerer & Graubner, 2020), which is a light-weight convolutional 
neural network (51 convolutional layers and close to 500,000 parameters) adapted from Context Guided Network 
(CGNet) (Wu et al., 2019) to efficiently track these severe events without using IVT as a predictor variable. 
Instead of using IVT, this study uses zonal wind at 850 mb, meridional wind at 850 mb, surface pressure, and 
IWV as input. The selected input features allow the tracking method to capture contextual two-dimensional flow 
in the lower troposphere while still identifying large plumes of moisture that play a key role in shaping the identity 
of ARs. By not requiring IVT (which is an integral function of specific humidity and wind that requires addi-
tional computations in the vertical dimension from those of IWV, which is only an integral function of specific 
humidity), this method is immensely flexible with output from a broad variety of different climate simulations.

When applied to cityscapes, CGNet's greatest advantage is its performance relative to its memory footprint (Wu 
et  al.,  2019). It has two orders of magnitude less parameters than DeepLabv3+ and is computationally less 
expensive. This can be especially useful when identifying ARs in large datasets. This will also be the first study 
to demonstrate the performance of this neural network on a regional domain by providing an objective analysis 
of its consistency with eight different ARTMIP algorithms. The flexibility of this tracking method allows it to 
apply particularly well toward large ensemble climate datasets, which continue to increase in size (Chikamoto 
et al., 2013; Delworth et al., 2012; Kay et al., 2015). Analysis of these datasets is a critical part of quantifying 
the forced response of our climate system to anthropogenic forcing (Deser et al., 2020; Payne et al., 2020). They 
are particularly useful for reliably predicting probabilities of rare extreme events, but bring the challenge of 
requiring additional computational resources. The Weather@Home project addresses this challenge by generat-
ing large ensemble and high-resolution simulations of Earth's climate with the assistance of computing power 
from thousands of volunteers' computers (Guillod et al., 2017; Massey et al., 2015). It creates simulations in 
various geographic regions and for various warming scenarios by having volunteers run a global model to supply 
boundary conditions for a higher resolution 1-way nested regional model.

In this work we use output from new Weather@Home simulations using a recently developed configuration of the 
HadAM4 atmospheric model with 60 km horizontal resolution globally (Watson et al., 2020), which allows for 
the study of ARs. These simulations include 1,000–2000 winters for each of a set of climate states: recent histor-
ical climate and climates with 1.5°C and 2°C global mean warming above pre-industrial temperatures, following 
the method of Mitchell et al. (2017). This allows us to better quantify the uncertainty of the future of extreme ARs 
and severe western US precipitation. Precipitation is particularly difficult to predict in traditional climate models. 
Predicting water vapor is more reliable (Lavers et al., 2016), allowing IVT and possibly ARs to be a favorable 
method for understanding changing patterns in precipitation (Johnson & Sharma, 2009). Understanding ARs in 
future climates is a growing area of interest (Espinoza et al., 2018; Warner et al., 2015; Zhao, 2020), which calls 
for a fast, reliable, and adaptable tracking method for large ensemble climate datasets such as Weather@Home 
outputs and CMIP6 simulations. Below, we show results from tracking ARs in Weather@Home simulations with 
a Convolutional Neural Network (CNN) adapted from CGNet, a technique that we refer to as “CG-Climate.” In 
Section 2, we describe the data set that we use for statistical comparisons to other algorithms and the data set that 
we use to demonstrate its applications to larger scales. In Section 3, we discuss our approach toward estimating 
the reliability of the algorithm. In Section 4, we show the results of our methods. In Section 5, we give concluding 
remarks on our findings.
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2. Data
Due to the diverse definitions of ARs, we apply an AR expert hand-labeled 
contour data set toward tracking them named ClimateNet. Various AR 
expert hand-labeling contour campaigns were launched to obtain almost 500 
feature-label pairings of AR locations with snapshots of CAM5.1 25  km 
resolution data on a global domain (Prabhat et  al.,  2021). This endeavor 
included campaigns at LBNL, UC Berkeley, Scripps/UCSD, NCAR, the 
2019 ARTMIP Workshop, and the 2019 Climate Informatics Workshop, 
where 80 different weather and climate scientists participated. Labelers were 
shown geospatial maps of IWV, IVT, surface pressure, and wind velocity at 
850 mb at each snapshot in time. Even amongst human experts, there was a 
significant amount of AR label disagreement. One highly popular metric that 
is used to estimate performance in semantic image segmentation identifica-
tion scenarios is mean IoU (intersection over union) (Figure 1). IoU is calcu-
lated by dividing the area in which the same class of an object is detected by 
two different sources by the total area in which that class is detected by either 

source. The AR IoU was 0.34 when human-labeled ARs were compared to each other. For this work, the test set 
contains 61 images of hand-labeled contours occurring after 2011 and the training set consists of 400 images of 
hand-labeled contours occurring before 2011.

Our approach toward verifying the level of reliability of this AR tracking method is comparing its outputs to 
outputs from various ARTMIP algorithms that tracked ARs in the same data. Here, we use the National Aero-
nautics and Space Administration (NASA) Modern-Era Retrospective Analysis for Research and Applications 
version 2 (MERRA-2) data from January and February of 2006–2015 at a 3-hourly temporal resolution as infer-
ence data (data that ARs were detected in). The features used were zonal wind at 850 mb, meridional wind at 850 
mb, surface pressure, and IWV derived from specific humidity. The algorithm outputs binary arrays containing 
the locations in which it detects ARs. The resolution was 0.625° longitude × 0.5° latitude. All algorithms were 
compared to each other on the domain spanning 30°–60°N and 100°–150°W as the features of interest are the 
ARs making landfall over the Western US. CG-Climate was first run on the MERRA-2 data set and trained on 
the ClimateNet data set for verification. Various different combinations of the training set domain and resolution 
were used to inform the user of the best way to apply CG-Climate to their own data. We obtained data from the 
tier 1 ARTMIP catalog referenced in Shields et al., 2018 of AR masks tracked from eight different ARTMIP algo-
rithms in MERRA-2 as ground “truth” in all verification metrics. Performance was evaluated by calculating mean 
AR Intersection over Union (IoU), precision of overlapping events, and recall of overlapping events. CG-Climate 
was also trained on ARTMIP labels to diagnose inconsistencies between it and ARTMIP. A schematic of all 
comparisons between detection methods and datasets in the study are shown in Figure 2.

The algorithm was also applied to data from the Weather@Home project to gain a better understanding of its 
speed and flexibility. This data set has a horizontal grid resolution of 5/6° × 5/9° (approximately 60 km in middle 
latitudes) covering November-February (with November data discarded as spin-up) (Bevacqua et  al.,  2021). 
CG-Climate was run on 2 V100 GPUs over 1,244 winters from the historical climate scenario, 1,338 winters from 
the 1.5° increase scenario, and 1,682 winters from the 2° increase scenario for a total of 4,000 winters. We used 
variables IWV, zonal wind at 850 mb, meridional wind at 850 mb and surface pressure at 6-hourly intervals from 
the domain spanning 25°N–90°N and 240°W–35°E, which took up 500 GB after preprocessing was completed. 
CG-Climate identified ARs on the time scale of hours.

3. Methods
CGNet is a context guided (CG; local segmentation is guided by surrounding contextual information) neural 
network that was developed by Wu et al. (2019) with the objective of identifying objects in cityscapes with the 
amount of computing power available on mobile devices. An example of semantic segmentation applied to both 
cityscapes and ARs is shown in Figure 3. Its relatively light-weight architecture makes this neural network a 
potentially suitable method of tracking ARs in large climate datasets due to the time and computational resources 
that is saved from using it. After applying 3 standard convolutional layers, the data is fed into a CGBlock, which 

Figure 1. An example of an IoU calculation between CG-Climate and 
Tempest (Ullrich & Zarzycki, 2017) at a single instant in time. AR IoU 
is calculated by dividing the orange area (the area where both detection 
algorithms overlap) by the sum of the orange area, the black area (the area 
where only one algorithm detected an AR within an event in which both 
algorithms overlap), and the blue area (the area in which only one algorithm 
detected an AR that was not within an event in which both algorithms 
overlap). In AR IoU calculations, the black area and the blue area are weighted 
equally despite the blue area consisting of grid points that are not associated 
with an overlapping event and the black area consisting of grid points that are 
associated with an overlapping event.
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is the core building block of the CNN. The CNN in this study used 24 total CGBlocks. The CGBlock first applies 
a 1 × 1 convolution to apply a dimensionality reduction across the respective input feature maps (i.e., physical 
variables in the first layer); this reduces the number of resulting convolutional fields to 1. Two 3 × 3 convolutional 

Figure 3. An example of two different applications of semantic segmentation. (a) A feature-label pair of objects in a 
cityscape. (b) A feature label pair of ARs in an IWV field. AR contours are shown in purple, blue, green, and pink.

Figure 2. Schematic diagram showing the flow of comparisons and datasets used in the study.
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kernels are then applied. One is dilated to represent surrounding context and one is not dilated to represent local 
context. The outputs from both the standard and dilated convolutions are concatenated into a joint feature map. A 
batch normalization is performed to normalize the mean and variance from the output and a PRelU activation 
function is applied (Xu et al., 2015). 1 × 1 average pooling is applied to the output from the PRelU function 
followed by a linear layer, the RelU activation, and another linear layer. Finally, a sigmoid function is applied to 
the output of the second linear layer before element-wise multiplication is used between it and the output from the 
PRelU activation function. The Jaccard Loss function is used for training. The loss function uses gradient descent, 
which minimizes the loss over 15 epochs with a batch size of 4 and a learning rate of 0.001. Stopping is applied 
when the gradient approaches zero.

The wide variety of accepted detection algorithms in the AR research community creates a dilemma in deter-
mining the truth to compare this algorithm to for verification. Due to the lack of agreement between ARTMIP 
algorithms and the types of algorithms used to calculate ARs (Inda-Díaz et al., 2021; Zhang et al., 2021), it is 
necessary to compare CG-Climate to additional common tracking methods to best understand its reliability. 
We compare the output of CG-Climate to eight different ARTMIP algorithms (Table 1). We also compare each 
ARTMIP algorithm to the remaining seven ARTMIP algorithms. We do not claim our evaluation metrics capture 
the detection skill of any of the ARTMIP algorithms, largely due to the fact that different algorithms were created 
to identify ARs in different contexts. All ARTMIP algorithms are already considered to be reputable. The goal 
of our approach is to acquire a reference point for the consistency of CG-Climate relative to a variety of other 
algorithms and show that the inconsistencies that do exist within its detection results are within a threshold that 
is common when reputable algorithms are compared to each other.

Once events were calculated in MERRA-2 data, we filtered out events that existed for less than 12 hr and did not 
exceed an area greater than 150,000 km 2 to exclude events that were unable to sustain moderate development 
and to stay consistent with (Kapp-Schwoerer & Graubner, 2020). Various ARTMIP algorithms require the length 
of the AR to be greater than 1,500–2,000 km and do not have a width requirement (e.g., Brands et al., 2017; 
Gershunov et al., 2017; Goldenson et al., 2018; Guan & Waliser, 2015; Reid et al., 2020; Rutz et al., 2014). We 
chose a cluster area of 150,000 km 2 because that is roughly the product of two grid points in width and 1,500 km 
in length. Beyond filtering out events that did not meet the 12 hr threshold, changes in temporal resolution had no 
effect on the results, as masks are first calculated at individual time steps.

AR IoU between two detection algorithms is calculated by dividing the number of grid points in which both 
algorithms detected an AR by the total number of grid points in which at least one algorithm detected an AR. 
While IoU is a useful metric to measure consistency of algorithms with each other, it is not perfect for AR detec-
tion algorithms because AR detection algorithms only attempt to identify one type of object. Some detection 
algorithms may disagree on what spatial area an AR occupies, but agree that there is an AR in a particular loca-
tion. This is a common theme given that all AR detection algorithms have their own unique spatial biases. The 
training set used in this study used AR masks that were particularly larger than ARs detected from other studies 
(Inda-Díaz et al., 2021). An extreme example of this happened on 3 January 2006 at 18Z (Figure 4) and serves as 
a useful case study to demonstrate this phenomenon. All eight algorithms agree that an AR did exist in the east-
ern Pacific and did impact the west coast, so we can confidently say there was an AR there. While CG-Climate 
correctly decides that there was an AR at that location, the IoU with Mundhenk is only 0.307, which is less than 
the average IoU between those two algorithms. The main difference between these two detection results is the 
horizontal spatial extent of the AR rather than the central location in which it occurred or the existence of an AR 
existed within the domain at that time. The backbone of the AR identified from CG-Climate remained the same 
as it was in all eight ARTMIP algorithms. The discrepancy in spatial extent is accounted for by grid points that do 
not play as strong of a role in defining the main characteristics of the AR as grid points closer to the center despite 
having the same amount of relevance in AR IoU calculations. While we still consider mean AR IoU to be a useful 
and valid verification method, its limitations warrant the use of an additional verification method that focuses on 
the performance of detecting overlapping AR events regardless of discrepancies in shape or size.

In our AR event precision and recall calculations, we define individual AR events as clusters of AR grid points 
that do not have any space separating them. We classify events to overlap when they share at least one AR grid-
point from the same event. We calculate precision by dividing the true positives (instances in which specified 
algorithm detects an AR that overlaps with given threshold of ARTMIP algorithms) by the sum of the true posi-
tives and false positives (instances in which the specified algorithm detects an AR that does not overlap with the 
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given threshold of ARTMIP algorithms). We calculate recall by dividing the true positives by the sum of the true 
positives and false negatives (instances in which the specified algorithm does not detect an AR i.e., detected by 
the given threshold of ARTMIP algorithms). The thresholds used are the ranges from each possible number of 
ARTMIP algorithms to eight.

CG-Climate can be trained on varying domains and resolutions that do not equal those of the inference set. Train-
ing the model on the largest available domain allows the user to use the maximum amount of available training 
data. However, training on a domain that is different from the inference data domain also creates a degree of 
inconsistency between training and inference data. Since the original training data set resolution was higher than 
the inference set resolution, a similar dilemma occurs when the model is trained on a resolution that is higher than 
that of the inference set. To understand the impact of training the model with domains and resolutions that are 
different from those of the inference set, we first train CG-Climate on three different datasets. The inference set 
remains the same for all three runs and uses the small domain (Figure 5b). The first using an equal domain and 
equal resolution to the inference set (Eq Dom/Eq Res), the second using an equal domain and the native 25 km 
CAM5.1 resolution rather than the re-gridded MERRA-2 0.625° longitude × 0.5° latitude resolution (Eq Dom/
High Res), and the third using the full domain (Figure 5a) and equal resolution to the training set (Full Dom/Eq 
Res). The performance of each output is evaluated by the AR IoU with all eight other algorithms that tracked ARs 
in the same data set over the same time period within the evaluation domain (Figure 5d). All ARs were tracked in 
MERRA-2 data with both CG-Climate and ARTMIP methods.

In Figure 6, box-whisker plots are calculated from all AR IoU values between a given algorithm and all remaining 
ARTMIP algorithms. Based on this data, CG-Climate is the most consistent with the ARTMIP algorithms when 
the training data domain and resolution is equal to that of the inference set. When CG-Climate is trained on the 
same domain and same resolution as that of the inference set, AR IoU is similar to that of various ARTMIP algo-
rithms. It also has more consistency than Goldenson, which understandably has the lowest IoU values because 
it is the only heuristic based ARTMIP algorithm shown here that does not require wind velocity at multiple 
vertical levels as an input variable. These high AR IoU values exist in spite of a significant positive areal extent 

Figure 4. A display of an AR that occurred on 3 January 2006. (a) The area of the AR when identified with CG-Climate. (b) The area of the AR when identified by 
Mundhenk et al. (2016). (c) A composite of the areas of the AR when identified by eight different ARTMIP algorithms. (d) A spatial plot of IWV.
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bias mentioned in Kapp-Schwoerer and Graubner  (2020). For the rest of our analysis we will use the output 
of CG-Climate when trained on the same domain and resolution as that of the inference set to demonstrate its 
performance.

Weather@Home simulations output data in regional domains to conserve computational resources. In some cases, 
the regional output contains multiple regions that experience high levels of AR activity and have varying AR 
climatologies. Training the model on a domain specific to the climatology the user is investigating requires less 
computational resources and enables the model to be trained and run at faster speeds compared to training on the 
full domain. ARs that occur in areas with different climatologies also have varying characteristics regardless of 
detection algorithm (Inda-Díaz et al., 2021). However, cropping the domain also reduces the amount of training 
data. To better understand this relationship, we trained and ran CG-Climate on three different domains (Figure 5). 

Figure 5. All four domains used for training and analysis. (a) The original training domain (Full). (b) A domain only containing the northeastern Pacific (Small). (c) 
A domain containing two active regions of AR activity in output from the Weather@Home data set (North Atlantic and northeastern Pacific) (Large). (d) The domain 
used for comparisons between ARTMIP algorithms (Evaluation).

Figure 6. Box plots consisting of all values of AR IoU between each given detection method and all remaining ARTMIP 
algorithms used for evaluation. Every box that represents an ARTMIP algorithm does not include mean AR IoU values 
between itself and any of the variations of CG-Climate.
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Outputs from the model when trained on the domains seen in Figures 5a–5c were cropped to equal the domain 
in 5d before being compared to outputs from each of the ARTMIP algorithms. The domain in 5d was chosen 
because it is the largest domain that fits within the domains used in all eight ARTMIP algorithms. We found that 
there was not a discernible difference in AR IoUs between any of the three domains trained on CG-Climate and 
eight ARTMIP algorithms (Figure 6b). The AR IoU values between each of the outputs and all eight ARTMIP 
algorithms was slightly less than that of all eight ARTMIP algorithms when compared to each other.

Running CG-Climate on the training and inference domain in the small domain (Figure 5b) was 4.5 times as fast 
and required 4.5 times less computational memory than running it on the full domain (Figure 5a) when the same 
number of training images were used. The time and computational memory saved by using a smaller domain does 
not scale linearly to the difference in the number of grid points, as the ratio of the number of grid points in the 
small domain to the number of grid points in the full domain is roughly 1:12. Training the model with the small 
domain results in noticeably less consistency with ARTMIP algorithms when there are less than 150 images in 
the training set. However, once more images are added to the training set, CG-Climate appears to have similar 
consistency with ARTMIP algorithms across all three domains. All three domains had similar consistency to the 
ARTMIP algorithms on average given the amount of available training data. We therefore further evaluate perfor-
mance based on the output of AR masks run on MERRA-2 data in the small domain (Figure 5b) and trained on 
human hand labels within the small domain at the same MERRA-2 spatial resolution as that of the inference set.

4. Results and Discussion
To estimate the comparative speed and computational saving of CG-Climate, we ran Guan and Waliser (2015) 
version 3 on MERRA-2 data to serve as a characteristic algorithm with similar computational efficiency to 
other traditional heuristic methods. CG-Climate completed processing of the Weather@Home data (4,000 winter 
simulations) in 10 hr and allocated 0.36 TB of computational memory. By scaling the result of running Guan 
and Waliser on a lesser amount of MERRA-2 data in the same spatial domain, we estimate Guan and Waliser 
would take 23 days to process the Weather@Home data set and allocate 92 TB of computational memory if the 
required input variables were available. This efficiency comes in addition to the computational resources saved 
from Weather@Home only producing wind velocity at one vertical level in its output.

Although CG-Climate had similar IoU values to those of the ARTMIP methods (Figures 6 and 7), the earlier 
noted areal extent bias calls for an additional metric to be used to understand the performance of CG-Climate. 
An alternative useful metric to look at is the consistency in which algorithms identify the same AR events. We 
classify multiple algorithms to identify the same event when any two individual AR masks have at least one 
overlapping grid point. Figure 8a shows the consistency of event overlap between each detection algorithm and 
the remaining ARTMIP algorithms. Each data point represents the precision and recall of a given algorithm at a 

Figure 7. AR IoU of the output of CG-Climate with each of the eight ARTMIP algorithms over the evaluation domain when trained on each of the three domains 
referred to in (a–c). (a) The AR IoU for each domain when trained on varying amounts of training images. (b) The AR IoU for each domain when trained on 400 
training images. The ARTMIP mean represents the AR IoU value of all eight ARTMIP algorithms when compared to each other.
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different threshold. Greater areas under precision-recall curves indicate more consistency with the truth (Boyd 
et al., 2013). By this metric, there was a high amount of variability between all algorithms. In less than 10% of AR 
instances, all eight ARTMIP algorithms agreed that there was an AR. When CG-Climate found an AR, at least 
half of the ARTMIP algorithms also found an AR in that same location 82% of the time. When at least half of the 
ARTMIP algorithms found an AR, CG-Climate found an AR 82.5% of the time. This indicates that CG-Climate 
does not have a large bias in frequency of AR events and generally detects events in the same location as ARTMIP 
algorithms.

Figure 8b shows precision and recall curves for AR grid points rather than AR events. In this plot, precision 
is defined as the percentage in which AR grid points detected by a specified algorithm are overlapping within 
a given threshold of ARTMIP algorithms. Recall is the percentage in which AR grid points detected within a 
given threshold of ARTMIP algorithms are overlapping with a specified detection algorithm. By this metric, 
CG-Climate is far less consistent with other algorithms than the previous metric while still being within the range 
of other algorithms. Overall, precision and recall values are far higher when used as a measure of consistency 
between events instead of consistency between grid points, indicating that spatial area bias generally accounts 
for more inconsistency between overall AR IoU values than event frequencies and event locations. To further 
understand the primary driver of IoU inconsistencies for each algorithm, we refer to Figure 9.

When applied to weather event identification, the components that are used to calculate IoU can be broken down 
into three categories. The first being the area in which grid points intersect with each other, the second being the 
area in which grid points do not intersect with each other, but are associated with an event that intersects, and 
the third being the area in which grid points do not intersect with each other and are not associated with an event 
that intersects (Figure 1). Figure 9 shows the percentage of total non-intersecting grid points that are associated 
with a matching event for each algorithm. Out of all the AR grid points used to calculate the AR IoU between 
CG-Climate and the ARTMIP algorithms, 67.6% of them were associated with matching events.

Figure 9. The percentage of non-intersecting grid points that are associated with matching events in IoU calculations for each algorithm.

Figure 8. Precision and recall between each detection algorithm and all other ARTMIP algorithms (truth). The thresholds used are the number of algorithms that 
overlap for any given AR. (a) Precision and recall values between AR events. (b) Precision and recall values between AR grid points.
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The spatial extent of ARs is a relevant characteristic of ARs that may change in the future (Inda-Díaz et al., 2021; 
O’Brien et al., 2022). The mean area of ARTMIP ARs in this study is 1.6 million km 2 and individual algorithm 
area means range from 640,000 km 2 to 2.5 million km 2. The mean area of ARs detected by CG-Climate is 2.1 
million km 2. While the average area of ARs detected by CG-Climate is certainly above the ARTMIP mean, it is 
still within the range of variance. To further investigate the spatial area bias of CG-Climate, we train it again on 
ARTMIP labels from each algorithm rather than expert labels. For this experiment, the training data consisted 
of MERRA-2 data from January to February of the years 1995–2004 and the inference data once again consisted 
of January to February of the years 2006–2015. Each output was only compared to the ARTMIP algorithm that 
was used to detect the labels that it was trained on. When CG-Climate was trained on ARTMIP labels rather 
than human hand labels, there was a 63.5% reduction in non-intersecting grid points that were associated with 
matching events and a 43.8% reduction in the number of events that do not match at all. This result shows that 
CG-Climate's spatial area bias can be largely attributed to the spatial area bias of the training data labels rather 
than a deficiency in the neural network architecture.

The use of human expert hand labels is a useful method of finding an alternative perspective to track ARs and may 
indicate that there is relevant missing information in traditional tracking algorithms that is critical to the identity 
of ARs, but its differences must be acknowledged when used. Figures 10a and 10b shows the percentage change 
between the average frequency in which each ARTMIP algorithm detects an event and the average frequency 
in which CG-Climate detects an event at each grid point in the spatial domain. There is a sharp decrease in AR 
grid point frequency biases when CG-Climate is trained on ARTMIP labels in comparison to human hand labels. 
While training CG-Climate on hand labels is still an effective neutral solution toward choosing a neutral training 
set that is not particularly biased toward any particular ARTMIP algorithm, it must be noted that using hand 
labels also causes it to detect AR grid points more frequently than ARTMIP algorithms, largely resulting from 
the tendency of hand labels to be larger than heuristic-based calculations.

The origin of the spatial area bias in human hand labels remains a question. One possible explanation is that it 
is rooted in the ambiguity of the task of identifying ARs. The overwhelming majority of semantic segmentation 
image identification tasks focus on solid objects with rigid edges. ARs are objects that exist in a fluid medium 
and do not have clean and well-defined edges. In the application of AR identification, they exist in a space with 
the background class accounting for most pixels and the event class accounting for a relatively small minority. 
This could create a dynamic in which labelers mentally classify the background area to have less importance than 
the event area and prioritize the inclusion of event pixels in their labels more than the exclusion of background 
pixels. Additionally, contour labels were made on a global domain, which could create the challenge of making 
precise labels. Despite deviations from ARTMIP methods, the inclusion of additional space close to ARs is likely 
a result of a unique perspective added to AR detection and may help benefit future studies that aim to quantify 
interactions between ARs and large-scale synoptic systems. The immediate space around ARs could be highly 
relevant to the flow, the development, the lifetime, and the structure of them.

By running CG-Climate on multiple datasets, we can better understand its flexibility. CG-Climate was run on 
over 1,200 January and February months of data from the Weather@Home project historical scenario that uses 

Figure 10. Spatial plots of the change in mean ARTMIP detected AR gridpoint frequency to mean CG-Climate AR gridpoint frequency. (a) CG-Climate trained on 
human hand labels (b) CG-Climate trained on ARTMIP labels. All training sets contained 400 feature label pair images.
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radiative forcing from 2006 to 2015. Figure 11 shows the ensemble variability 
of the amount of ARs detected per month in the Weather@Home data (box 
and whisker) and the amount of ARs detected per month in MERRA-2 data 
(blue line) during the same time period at a 6 hr temporal resolution. Overall, 
the number of ARs found per month was similar in both datasets, indicating 
that CG-Climate can be compatible with various simulations and spatiotem-
poral resolutions. An average of 6.35 ARs were detected per month in the 
Weather@Home data, which is slightly less than the average of 7.35 ARs per 
month found in the MERRA-2 data. The slight decrease in ARs per month is 
consistent with the slight negative winter precipitation and extreme precip-
itation bias that HadAM4 has in the North Pacific (Bevacqua et al., 2021; 
Watson et  al.,  2020) and the relatively low sample size of reanalysis data 
enabling natural variability to have a substantial impact on the average.

5. Conclusion
CG-Climate is able to identify atmospheric rivers at fast speeds and requires 
a relatively low amount of computational resources. It can do this without 
some key input variables that are required in other popular detection meth-

ods. Given the amount of available AR expert hand-labeled contour data available for public use, there is not a 
noticeable decline in performance when CG-Climate is trained and tested on regional domains. This may become 
increasingly relevant to future studies, as regional climate change projections are particularly complicated to 
make and are currently not well understood (Collins et al., 2018). The model has a high level of consistency 
with ARTMIP algorithms for varying spatial domains. Although some heuristics are found in multiple ARTMIP 
algorithms, CG-Climate still has IoU values that are similar to various detection algorithms and frequently 
detects ARs in the same location and time as ARTMIP algorithms. The main source of inconsistency between 
CG-Climate and ARTMIP algorithms is its spatial area bias. However, we found that the spatial area bias can 
largely be attributed to the choice in training data rather than the neural network architecture itself. CG-Climate 
is a useful tool that can be used to identify ARs in large climate datasets and will likely facilitate future studies of 
shifts in western precipitation resulting from a changing climate as datasets continue to get larger and the compu-
tational and time cost of tracking processes within them continues to grow.

Data Availability Statement
The source code and hand-labeled training data used to run CG-Climate is available at NERSC Science Gateways 
and can be found at https://portal.nersc.gov/project/ClimateNet/ (Kapp-Schwoerer & Graubner, 2020). Source 
data for the full MERRA-2 Tier 1 catalogues are available from the Climate Data Gateway (CDG), https://doi.
org/10.5065/D62R3QFS (NCAR/UCAR Climate Data Gateway, 2018). Participation in ARTMIP is open to any 
person or group with an AR detection scheme and/or interest in analyzing data produced by ARTMIP (Chris-
tine Shields, 2018). The MERRA-2 data used in this study can be found at https://rda.ucar.edu/datasets/ds313-
3/ (Atmospheric Chemistry Observations & Modeling, National Center for Atmospheric Research, University 
Corporation for Atmospheric Research & Climate and Global Dynamics Division, National Center for Atmos-
pheric Research, University Corporation for Atmospheric Research, 2018). The Weather@Home data used in this 
study are available through Bevacqua, Watson, et al. (2020) at http://doi.org/10.5281/zenodo.4311221 (Bevacqua 
et al., 2020).
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